Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Deriving high-quality light curves for asteroids and other periodic sources from survey data is challenging owing to many factors, including the sparsely sampled observational record and diurnal aliasing, which is a signature imparted into the periodic signal of a source that is a function of the observing schedule of ground-based telescopes. In this paper we examine the utility of combining asteroid observational records from the Zwicky Transient Facility and the Transiting Exoplanet Survey Satellite, which are the ground- and space-based facilities, respectively, to determine to what degree the data from the space-based facility can suppress diurnal aliases. Furthermore, we examine several optimizations that are used to derive the rotation periods of asteroids, which we then compare to the reported rotation periods in the literature. Through this analysis we find that we can reliably derive the rotation periods for ∼85% of our sample of 222 objects that are also reported in the literature and that the remaining ∼15% are difficult to reliably derive, as many are asteroids that are insufficiently elongated, which produces a light curve with an insufficient amplitude and, consequently, an incorrect rotation period. We also investigate a binary classification method that biases against reporting incorrect rotation periods. We conclude the paper by assessing the utility of using other ground- or space-based facilities as companion telescopes to the forthcoming Rubin Observatory.more » « less
-
Abstract The UKIRT Hemisphere Survey covers the northern sky in the infrared from 0° to 60° decl. Current data releases include bothJandKbands, withH-band data forthcoming. Here, we present a novel pipeline to recover asteroids from this survey data. We recover 26,138 reliable observations, corresponding to 23,399 unique asteroids, from these public data. We measureJ–Kcolors for 601 asteroids. Our survey extends about 2 mag deeper than the Two-Micron All-Sky Survey. We find that our small inner main belt objects are less red than larger inner belt objects, perhaps because smaller asteroids are collisionally younger, with surfaces that have been less affected by space weathering. In the middle and outer main belts, we find our small asteroids to be redder than larger objects in their same orbits, possibly due to observational bias or a disproportionate population of very red objects among these smaller asteroids. Future work on this project includes extracting moving object measurements fromH-andY-band data when it becomes available.more » « less
-
The Solar System Notification Alert Processing System (SNAPS): Asteroid Population Outlier DetectionAbstract The Solar system Notification Alert Processing System (snaps) is a Zwicky Transient Facility (ZTF) and Rubin Observatory alert broker that will send alerts to the community regarding interesting events in the solar system.snapsis actively monitoring solar system objects and one of its functions is to compare objects (primarily main belt asteroids) to one another to find those that are outliers relative to the population. In this paper, we use theSNAPShot1data set, which contains 31,693 objects from ZTF, and derive outlier scores for each of these objects.snapsemploys an unsupervised approach; consequently, to derive outlier rankings for each object, we propose four different outlier metrics such that we can explore variants of the outlier scores and add confidence to the outlier rankings. We also provide outlier scores for each object in each permutation of 15 feature spaces, between two and 15 features, which yields 32,752 total feature spaces. We show that we can derive population outlier rankings each month at Rubin Observatory scale using four Nvidia A100 GPUs, and present several avenues of scientific investigation that can be explored using population outlier detection.more » « less
-
Abstract High-quality Extragalactic Legacy-field Monitoring (HELM) is a long-term observing program that photometrically monitors several well-studied extragalactic legacy fields with the Dark Energy Camera (DECam) imager on the CTIO 4 m Blanco telescope. Since 2019 February, HELM has been monitoring regions within COSMOS, XMM-LSS, CDF-S, S-CVZ, ELAIS-S1, and SDSS Stripe 82 with few-day cadences in the (u)gri(z) bands, over a collective sky area of ∼38 deg2. The main science goal of HELM is to provide high-quality optical light curves for a large sample of active galactic nuclei (AGNs), and to build decades-long time baselines when combining past and future optical light curves in these legacy fields. These optical images and light curves will facilitate the measurements of AGN reverberation mapping lags, as well as studies of AGN variability and its dependencies on accretion properties. In addition, the time-resolved and coadded DECam photometry will enable a broad range of science applications from galaxy evolution to time-domain science. We describe the design and implementation of the program and present the first data release that includes source catalogs and the first ∼3.5 yr of light curves during 2019A–2022A.more » « less
An official website of the United States government
